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Abstract. In this paper, by using our improved plane wave decomposition method, we study
the scars in the eigenfunctions of the stadium billiard from a very low state to as high as about
the 1 millionth state. In the systematic searching for scars of various types, we have used
the approximate criterion based on the quantization of the classical action along the unstable
periodic orbit supporting the scar. We have analysed the profile of the integrated probability
density along the orbit. We found that the maximal integrated intensity of different types of scars
scales in different way with the ¯h, which confirms qualitatively and quantitatively the existing
theories of scars such as that of Bogomolny and Robnik.

1. Introduction

In the study of quantum chaos, energy-level statistics and wavefunction statistical properties
are of great fundamental importance. They are proper measures to describe the signature
of chaos in a quantum system whose classical counterpart is chaotic. After unfolding, the
energy-level statistics has some universal behaviours in the semiclassical limit. It has been
conjectured by Bohigaset al [1] that the level fluctuations only depend on general space-
time symmetry, and are the same as predicted by the random matrix theory. Extensive
numerical and experimental results have supported this conjecture (see, e.g. [2], although a
rigorous mathematical proof of this conjecture is still missing.

However, despite the importance, the wavefunction of a quantum chaotic system has
so far remained a relatively less studied area as compared with the energy spectra. A
counterpart of WKB-ansatz, which is valid in the case of an integrable system, is still
missing for a chaotic system. The only proven result is the so-called ‘Shnirelman’s theorem’
[3], which deals with the phase-space measures associated to eigenstates of a classically
ergodic system in the semiclassical limit. Shnirelman’s theorem predicts that as the energy
goes to infinity, the probability density of most eigenstates of a chaotic billiard approaches a
uniform distribution. This is consistent with the prediction of Berry [4] and Voros [5]. One
major surprise is the discovery of the strong enhancement of the probability density along
the least unstable periodic orbits, which was first observed by McDonald and Kaufman [6],
and later also by Heller [7] for stadium billiard. This kind of structure was named ‘scar’
by Heller.

Since its discovery, much effort has been made to understand this interesting
phenomenon, and much progress has been achieved up to now. On the theoretical side,
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Bogomolny [8] developed a semiclassical theory of scars in configuration space, and Berry
[9] performed a similar analysis in phase space using the Wigner function. According to this
theory, the intensity (see equation (6) for the definition) of a scar goes as

√
h̄. Furthermore,

based on the semiclassical evaluation of the Green function of the Schrödinger equation in
terms of the classical orbit, Robnik [10] developed a theory, which suggests that although
the geometrical structure of the scar can be determined by a single short periodic orbit
(primary orbit), the maximal intensity of the scar is nevertheless determined by the sum
of contributions from similar but longer periodic orbits, which ‘live’ in the homoclinic
neighbourhood close to the stable and unstable manifolds of the primary orbit. The maximal
intensity is independent of ¯h. The contribution of homoclinic orbits surrounding the primary
orbit to the density of states has been studied by Ozorio de Almeida [11]. Most recently,
Klakow and Smilansky [12] used a scattering quantization approach to study the scar
problem. Parallel to the theoretical developments, there have also been many numerical
[13–15] and experimental [16] studies.

Unfortunately, due to the limit of the numerical techniques and the computer facilities,
most of the numerical studies so far are undertaken only in the very low-energy range,
which is too low to verify the theoretical predictions in the very far semiclassical limit,
especially for Robnik’s theory.

In this paper, we propose a new numerical technique for solving the eigenvalue problem
of two-dimensional stadium billiard. Since our method is based on the Heller’s plane wave
decomposition method (PWDM), we call it the improved PWDM. (For more details about
Heller’s PWDM, please see [17, 18].) By using this improved PWDM, we have been
successful at going to as high as the 1 millionth state, which we believe is already very
deep in the semiclassical regime for the stadium billiard. Moreover, with the help of the
semiclassical criterion [8, 10], we have found many consecutive scars in several different
energy ranges, which span two orders of magnitude in the wavenumber. With this collected
ensemble of scars, we are able to study many properties of scars such as the scaling property
of the scar intensity profiles with ¯h up to the very far semiclassical limit.

This paper is organized as follows. In section 2 we discuss the improved PWDM which
is used to calculate all the high-lying eigenstates discussed in this paper. The properties of
different types of scars are discussed in section 3. In section 3.1, we discuss the scar type,
whose maximal integrated intensity is independent of ¯h, which evidently supports Robnik’s
theory of scars; while in sections 3.2 and 3.3 we discuss the scar type, its geometrical
structure can be predicted by Bogomolny’s theory very well. More examples of scars and
the bouncing ball states are also briefly discussed in section 4. We end our paper with
discussions and concluding remarks in section 5. Part of the work in section 3.1 was
reported earlier in [19].

2. The improved PWDM

As was mentioned previously, the difficulty of studying the eigenfunctions in the very
far semiclassical limit lies in the numerical calculation of the eigenenergies and the
corresponding eigenfunctions. The usual diagonalization method is not suitable because it
calculates all the eigenvalues from the ground state up to a certain eigenenergy. Therefore,
the dimension of the matrix to be diagonalized increases with the sequential number of the
eigenstates. This drawback becomes the greatest obstacle if we want to go to the regime
very far in the semiclassical limit. Among many other methods, Heller’s PWDM is the
most suitable one for the study of the high-lying eigenstates. In previous works, Li and
Robnik [18] used this method to calculate the eigenstates as high as the 200 000th states in
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a KAM and chaotic billiard. However, in order to go to even higher energy, this technique
runs into the difficulty of spending too much CPU time on the matrix inversion. Thus, it is
necessary to improve this method to allow us to go much higher in the semiclassical limit
with suitable modern computer facilities. As we shall see in the following, our improved
PWDM is at least five times faster than the PWDM, which makes it possible to test the
semiclassical theory of scars.

To solve the Schr̈odinger equation with Dirichlet boundary conditions

19 + k29 = 0 9 = 0 at the boundary (1)

we use the superposition of plane waves with the wavevectors of the same magnitudek but
with different directions. The wavefunction we used for the odd–odd parity of the stadium
billiard is

9(x, y) =
N∑
j=1

aj sin(kjxx) sin(kjyy) (2)

wherekjx = k cos(θj ), kjy = k sin(θj ), k2 = E is the eigenenergy,N is the number of plane
waves,θj = 2jπ/N , i.e. the direction angles of the wavevectors are chosen equidistantly.
The ansatz (2) solves the Schrödinger equation (1) inside the billiard, so that we have
only to satisfy the Dirichlet boundary condition. For a givenk, we set the wavefunction
equal to zero at a finite numberM of boundary points (primary nodes) and equal to 1 at
an arbitrary chosen interior point. It is obvious that in order to avoid the underdetermined
problem we should takeM > N . This gives an inhomogeneous set of equations which can
be solved by matrix inversion. Usually the matrix is very singular, thus the singular value
decomposition method has to be invoked. After obtaining the coefficientsaj , we calculate
the wavefunctions at other boundary points (secondary nodes). The sum of the squares of
the wavefunction at all the secondary nodes (Heller called it ‘tension’) would ideally be
zero if k2 is an eigenvalue. In practice, it is a positive number. Therefore, the eigenvalue
problem becomes the task of finding the minimum ‘tension’. In practical implementation,
it is better to look for the zeros of the first derivative of the tension (for convenience we
denote this function withf (k)), since the derivative is available analytically/explicitly from
(2) once the coefficientsaj have been found.

This is the main idea of Heller’s method. In general, this method takes several (usually
about 10, it depends on the step size) iterations to find an eigenvalue, which means that
about 10 matrix inversions must be performed. This costs a lot of CPU time and turns out
to be the main shortage of this method. So, the primary motivation of our new technique
is to reduce the number of matrix inversions. As we shall soon see, this can be achieved
without any difficulty.

Since we have already calculated the coefficientsaj , after one matrix inversion, the
function f (k) can be expanded into a Taylor series aroundk0

f (k) = f (k0)+
∑
n=1

f n(k0)

n!
(k − k0)

n (3)

where f n(k0) is the nth derivative of f (k) at k0, which can be calculated
analytically/explicitly very easily. Thus, our task is now to find the roots of this polynomial,
which, as it is well known, uses much less CPU time than the matrix inversion. Then, the
eigenvalue aroundk0 is approximately equal tok0+1k, where1k is the smallest root of the
polynomial (3). Our numerical experience demonstrates that with this improved method, we
can get the eigenvalue with an accuracy of less than 1% of mean level spacing by just doing
one matrix inversion. To get higher accuracy, we should use the new eigenvaluek and do
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further matrix inversion. Then calculate the new coefficientsaj , and find out the smallest
root of the new polynomial. This procedure can be continued until an expected accuracy is
reached. In our numerical calculations, for almost all the cases, by performing about 2–3
matrix inversions we may get the eigenvalue with an accuracy as high as 10−4 of the mean
level spacing. Therefore, our improved PWDM reduces the CPU time about five times or
more as compared with the original Heller’s PWDM. In our practical implementation, the
function f (k) is expanded up to the eighth–tenth order, which is already good enough to
obtain the above-mentioned accuracy.

Before proceeding with any analysis of the scars, let us briefly discuss how to search
and collect the scarred eigenstates systematically and extensively, because we need enough
ensembles of the scarred eigenstates to make the numerical analysis significant. Therefore,
our first step is to collect scars of the same type in a wide range of energy. We begin from
a very low state, e.g. from the ground state. As long as we find the first scarred state, say,
for example at the wavenumberk0, then we can use the semiclassical criterion to estimate
the next scar. According to the semiclassical theory [8–10], the scar will probably occur if
quantized, i.e.

S = 2πh̄
(
n+ α

2

)
n = 0, 1, 2, . . . (4)

S is the action along the periodic orbit,α the Maslov phase. Thus, we jump to the
wavenumber at aboutk = k0 + 1k to calculate the eigenvalue and eigenfunction, where
1k = 2πh̄/L, L is the length of the periodic orbit. Usually, we need to calculate a few
eigenstates aroundk to locate the scarred eigenstate. We continue this procedure until we
collect a satisfied ensemble of scars. It is shown that, this procedure is very helpful in
estimating the energy range of the scarred state at the very far semiclassical limit. For
instance, from a very low scarred eigenstate atk0 we can skip over a very large number of
states to a rather high level, e.g. atk = k0 + m1k. m may be a very large number, e.g.
about a few hundred. As we shall see later, in many cases this criterion is even accurate
within one mean level spacing, namely, the scar occurs at the eigenstate whose eigenenergy
is roughly equal to the predicted energy by this way.

However, it must be pointed out that the semiclassical theory equation (4) cannot predict
the individual state at which the scar will occur. Instead, as mentioned before, if we
have already found one scar, say atk0, then the semiclassical theory just tells us that the
eigenstates at the wavenumber ofk0±1k, will probably be scarred.

In our study we put ¯h = 1, so, the inverse of wavenumberk plays the role of ¯h, i.e. k
goes to infinity indicates the semiclassical limit.

3. Statistical analysis of scars

In this section we would like to perform a quantitative analysis on the scars. As already
mentioned in the previous section, in order to compile any significant statistics we need
enough ensemble of scars of the same type. In searching and collecting the scarred
eigenstates we use both qualitative and quantitative procedures. We start from very low
state and calculate the probability density plots of the wavefunction for many consecutive
eigenstates, usually in the order of 20. We judge, at first visually, whether the state is
scarred or not by a certain kind of unstable periodic orbit (PO), e.g. diamond-shape PO
or the horizontal PO. Generally, this procedure is quite accurate and reliable, although it
is qualitative. Furthermore, in order to improve the objectiveness of the judgment, we
calculate the integral intensity according to equation (6) to check which scarred eigenstate
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is the favourite candidate. Relying on these two procedures we are able to select our scarred
eigenstate very objectively and with high reliability. As long as the first scarred eigenstate
is determined, we may use the semiclassical criterion equation (4) to chose the energy
range in which the next scarred eigenstate will probably occur. Then repeat the procedure
mentioned above and find out the next scarred eigenstate. In this way, we were able to select
a sufficient number of scarred eigenstates from a huge number of eigenstates (about 10 000
eigenstates ranging from very low to about 1 millionth state) for our numerical analysis.
The quantitative analysis is given in the following section.

3.1. Scars supported by the diamond-shape periodic orbit

In this section, we shall discuss a type of scar which demonstrates that the maximal
integrated intensity never vanishes as ¯h goes to zero. This finding is very different from
the prediction of the commonly believed theory—single periodic orbit theory, but it can be
explained by Robnik’s theory, as we shall see later. The main results of this section were
reported in [19], but more details about the wavefunction structures are given here.

With the help of the semiclassical quantization criterion equation (4) and the procedure
described above, we have gathered about 100 examples of the same type of scarred
eigenstates at different energy ranges, namely,k ranges from about 10 tok ≈ 1330. Here,
we select only six representatives of these scarred eigenstates from the very low to very
high states. They are shown in figures 1(a)–(f ). The eigenwavenumbers are given at the
top of each figure. The lowest one,k = 10.240 95 corresponds to about the 40th eigenstate,
while the highest onek = 1328.153 849, corresponds to the sequential number 250 034 for
odd–odd parity, and to the index about 1001 408 when all parities are taken into account.
To the best of our knowledge, this is the highest eigenstate showing a significant scar so
far.

Suprising as it is, in addition to the eigenstate shown in figure 1(f ), we have also
collected quite a few examples of this type of scarred states in such a high energy.
This implies that this type of scar survives the semiclassical limit. One may ask: does
this finding contradict Shnirlman’s theorem [3], which states that as the energy goes to
infinity, the probability density of most eigenstates of a chaotic billiard approaches a
uniform distribution? To test this, we have examined the statistics of the probability
distribution function of the eigenstate, and found that it is an excellent Gaussian distribution
function, although there is such a pronounced density around the unstable periodic
orbit. The probability distribution functionP(9) (P(9) d9 is the probability of finding
the wavefunction of value9) as well as the cumulative distribution functionI (9) =∫ 9
−∞ P(t) dt are shown in figures 2(a) and (b), respectively. They are compared with the

theoretical values of the Gaussian random model [4] which predicts

P(9) = 1√
2πσ

exp

(
− 9

2

2σ 2

)
. (5)

Even if we magnify the small details in the cumulative figure as shown in the boxes of
figure 2(b), the discrepency with the Gaussian function is almost indistinguishable. Where
σ 2 = 1/A, should be equal to〈92(x)〉, the average probability density inside the billiard,
according to the semiclassical theory [3–5].A is the area of the billiard.

In order to understand the scar properties quantitatively, we have investigated the
following pronounced (excess) intensity in a thin tube along the periodic orbit (see figure 3),
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Figure 1. (a)–(f ) The probability density plots of the wavefunction for six representative scarred
eigenstates of odd–odd parity. The wavenumber sk are given in the figure. The highest one
hask = 1328.153 849, which corresponds to the index of 250 034 by using the Weyl formula
(odd–odd), which corresponds to approximately the 1001 408th eigenstate for the total billiard.
The scar is apparently supported by the diamond-shape periodic orbit shown in figure 3. The
stadium has the parameter of circle radiusR = 1 and the straight line length 2. In this figure,
the unit length is about 211 de Broglie wavelengths.

which is defined by

I =
∫
92(x) dx∫ 〈92(x)〉 dx − 1 (6)

where9(x) is the eigenfunction atx. The integral is taken over a thin tube around the
periodic orbit as is shown in figure 3.

In figures 4(a)–(f ), we display the integrated intensity (6) versus the width of the tube
(D) in unit of the de Broglie wavelength around the periodic orbit for the scarred states



Statistical analysis of scars in stadium billiard 489

Figure 1. (Continued)

shown in figure 1. The wavenumber of each state is given at the left bottom of the box.
The first thing to be seen from these profile figures is that the scar intensity reaches a

maximum at a width of about 1–2 de Broglie wavelengths from the periodic orbit. This
agrees with Robnik’s theory which states that the semiclassical waves associated with
individual daughter orbits interfere constructively with each other only within a tube of
width 1–2 de Broglie wavelengths. The second important feature of these figures is that the
magnitude of the maximum does not change too much although the eigenenergy changes
more than 100 times.

Furthermore, after checking the eigenenergies of these six examples carefully, we found
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Figure 1. (Continued)

that the semiclassical criterion works very well, as mentioned in section 1, even though we
go from one scarred state to another one by jumping up to a few hundred scarred states. For
instance, starting from the first eigenvectork0 = 10.241 095, if we go through 65 scarred
states, we havek = k0+651k = 101.563 684, this value is very close to the true eigenvalue
kexact= 101.568 640. (Please note that, in this paper, we study only the eigenstates with
odd–odd parity, so the length of the periodic orbit shown in figure 3 isL = 2

√
5 rather

than 4
√

5 for the total billiard, thus,1k = 2π/L = 1.404 96.) The deviation is less than
one mean level spacing. This procedure also applies to many other scarred states and it
can be verified readily for other states given in figure 4. The validity of the semiclassical
criterion for the scarred eigenstates discussed here has also been verified very recently by
Frischat and Doron [20] in studying the scars occurring in a quantum system having a mixed
classical dynamics, where regular and irregular regions coexist in the classical phase space.

Now we turn to an important question, namely, the energy or ¯h dependence of
the maximal integrated intensity. This is a rather difficult problem, even in numerical
calculations. Our numerical results show that around a certaink, the maximal integrated
intensity varies from the scarred state to state. This property is clearly shown in figure 5,
where we plot 26 consecutive scarred states aroundk = 125, all of these 26 eigenstates show
very significant localization of the wavefunction around the periodic orbit. One interesting
thing to be noted from this plot is that there are two cases, one atk ≈ 121 and the other
at k ≈ 125 showing that two consecutive eigenstates are nearly degenerate, thus both
of them are scarred. Again, from this figure we can also clearly see that the semiclassical
criterion (4) works excellently, namely, the interval of the wavenumber between two scarred
states is almost a constant, which is approximately equal to 2π/L. The maximal integrated
intensity, however, fluctuates from state to state, which cannot be explained by any existing
semiclassical approaches. This is still an open problem which deserves further theoretical
and numerical investigations.

The results given in figure 5 imply that in order to make the study of dependence of the
maximal integrated intensity on energy significant, we should take certain kinds of ensemble
averaging. In our numerical study, we have performed such averaging around a certaink
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Figure 2. (a) The probability distribution functionP(9) and (b) the cumulative distribution
function I (9) of the eigenstate withk = 1328.153 849 shown in figure 1(f ), in comparison
with the Gaussian distribution function (dotted curve). In (b), three small boxed regions are
displayed in the corresponding magnified windows. It is readily to be seen that, even though
the eigenstate is scarred, its probability distribution function is an excellent Gaussian function.

over many scarred eigenstates (usually about 10 scarred states). The averaged results are
drawn in figure 6. The least-square fitting gives rise to

〈Im〉 = 0.73/kα α = 0.06± 0.03 (7)

where〈.〉 is the local average over many scarred states. Obviously, the exponentα = 0.06,
which is very close to zero, is far from1

2 predicted by Bogomolny’s theory. This fact
indicates that the maximal integrated intensity does not depend on the energy or the ¯h for
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Figure 3. The integral region around the periodic orbit that is taken in equation (6). The width
of the tube isD measured perpendicular to the periodic orbit.

the scar type shown and discussed in this section. This discovery is very different from
the previous one [14] and cannot be explained by the semiclassical theory of Bogomolny
[8] and Berry [9], however, it confirms quantitatively the theoretical prediction of Robnik
[10], which states that the maximal intensity of a scar, is independent of ¯h, if the scar is
supported by many orbits as mentioned above.

There are two important elements in Robnik’s unpublished theory.
(1) The width of the scar profile is about the order of the de Broglie wavelength.
(2) There are many similar longer periodic orbits which contribute to the scar intensity.
The first one comes from a very simple physical argument. The scar profile cannot

be smaller than the de Broglie wavelength since this is the smallest scale at which the
quantum waves explore the classical dynamics. However, it can neither be much larger
than that scale, simply because the contribution of the geometrically similar but longer
periodic orbits would destroy the scar beyond the distance of one de Broglie wavelength,
as the waves would interfere destructively there, while they would interfere constructively
within the region of order of one de Broglie wavelength. As to the second point, the reason
is that the periodic orbits, close to the stable and unstable manifolds and in the vicinity of
the primary periodic orbit, complete at first a few quasicycles which are very close to the
primary orbit, and only then diverge away before the final and ultimate closure. So, the first
few approximate cycles of such longer orbits do resemble the primary periodic orbit, but
they do not close exactly. The excursion of such orbits away from the primary orbit implies
for the semiclassical waves an unavoidable loss of phase coherence beyond the distance of
the order of one de Broglie wavelength away from the maximum of the scar. Taking into
account all these orbits, the pronounced intensity of the scar defined by equation (6) can be
described by the following formula,

I ≈ ν
∞∑
n=1

sin(nS1/h̄)

sinh(nλτ/2)
− 1 (8)

whereS1 is the action along the primary periodic orbit,λ is the Lyapunov exponent of the
primary orbit with the period ofτ , the summation overn is due to the repetitions of the orbit
and ν is the number of contribution orbits, which is determined by the criteria of correct
phasing. Equation (8) informs us thatthe maximal intensityof the scar, when supported by
many periodic orbits, is independent of ¯h. Finally, we would like to point out another im-
portant factor of Robnik’s theory, i.e. in deriving equation (8), the averages have been taken
over only one mean level spacing. Therefore, equation (8) generally applies to the individual
eigenstates. This is different from the theory of Bogomolny which we shall discuss later.

Our numerical results presented in this section provide the first and very significant
evidence supporting Robnik’s theory. In the next section we shall discuss another type of
scars which display a very different behaviour.
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Figure 4. The integrated scar intensity profileI versus the width of the integrating tube in unit
of the de Broglie wavelength for the scarred eigenstates given in figure 1. The wavenumbers
are shown at the left bottom of each figure. It is very obvious that although the eigenvector
varies more than 100 times, the maximal integrated scar intensity does not change too much. In
fact, it is marginally a constant which is about 0.6.

3.2. Scars supported by the V-shape periodic orbit

The theoretical prediction from Robnik is different from that of Bogomolny. We should say
that, however, it does not contradict that of Bogomolny at all. Instead, it is an extension
of Bogomolny’s theory to the scars supporting many periodic orbits. These two theories
describe different types of scars. In fact, there have already been some numerical results
supporting Bogomolny’s theoretical prediction [14], although these numerical calculations



494 B Li and B Hu

Figure 5. The maximum of integrated scar intensity versus the wavenumberk aroundk = 125
for 24 consecutive scarred states. The type of scar is the same as shown in figure 1, i.e.
the diamond-shape scar. It should be noted that the interval of the wavenumber between two
consecutive scarred states is very close to 2π/L (= 1.404 96), as predicted by the semiclassical
quantization condition equation (4).

Figure 6. The locally averaged (over a small group of consecutive scarred states) maximum of
the integrated scar intensity versus the wavenumberk. The full circle represents the numerical
data, and the full curve is the least-square fitting, which is 0.73/kα, α = 0.06± 0.03. α is very
close to zero means that this type of scar survives the semiclassical limit.

are limited to very low states.
By employing our improved PWDM, we are able to go much higher than before and to

test Bogomolny’s theory. In our numerical investigation, in addition to the scars discussed
in previous section, we have also obtained other types of scars whose maximal intensity
scales with ¯h in a very different way from that one given in (7) and (8).

Using the same strategy, i.e. the semiclassical quantization criterion, we have collected
several scars of the same type. One representative in the far semiclassical limit is shown
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Figure 7. The probability density plot for a scarred egienstate with wavenumberk =
1328.093 482, which corresponds to index 250 012 (odd–odd), and to the index about 1001 317
for the total billiard. The scar is obviously supported by the V-shape periodic orbit. There is a
clear so-called self-focal point at aboutx ′ ≈ 1.85. x′ is measured from the centre of the straight
line segment at the billiard boundary. This agrees very well with Bogomolny’s theoretical
prediction (for more details see text).

in figure 7. The scar is obviously supported by the V-shape unstable periodic orbit. (This
type of scar was also observed by Heller [7] at the very low state.) The wavenumber of the
eigenstate in figure 7 isk = 1328.093 482, which corresponds to the index 250 012 (odd–
odd), and to the index about 1001 310 for the total billiard. Again, to test Shnirelman’s
theorem, we have calculated the probability distribution function, this is shown in figure 8.
As in the case of figure 2, the probability distribution function is a perfect Gaussian function.
The integrated intensity profile is shown in figure 9. The maximal intensity is just about
0.4 which is obviously smaller than that of scar type given in section 3.1.

To look into theh̄ dependence of such a type of scar, we have made the local averaging
over a few consecutive scarred stated around a certain wavenumberk, andk changes from
about 10 to about 1300. The results are given in figure 10. The least-square fitting result is

〈Im〉 = 1.85/kα α = 0.24± 0.06. (9)

α differs significantly from zero, thus this type of scar cannot be described by Robnik’s
theory. Moreover, it is not difficult to see that this type of scar has some structures. In
particular, there exists points at which the wavefunction intensity is very high. To understand
these properties, we shall invoke Bogomolny’s theory. Accordingly, the semiclassical
expression for the wavefunction is given by [8]:

〈|9(x ′, y ′)|2〉 = ρ0+ h̄1/2
∑
p

Im

[
Ap(x

′) exp

(
i
Sp

h̄
+ i
Wkm
p (x ′)

2h̄
y ′ky
′
m

)]
(10)

the averaging〈·〉 is taken over many consecutive eigenstates (including those unscarred
states). For each periodic trajectory thex ′-axis is chosen along the trajectory and they ′m
axes are chosen perpendicularly to it.Sp =

∮
pn dqn is a classical action calculated along

the trajectory. Ap(x ′) andWkm
p (x ′) are classical quantities through the elements of the



496 B Li and B Hu

Figure 8. The same as in figure 2 but for the scarred state shown in figure 7.

monodromy matrix of a given trajectory. (The monodromy matrix of some shortest periodic
orbits are given in [8].) Several conclusions can be drawn from this formula: (a) the scar
has finite width perpendicular to the trajectories. It is proportional to [¯h/|W(x ′)|]1/2; (b) the
scar strength scales as ¯h1/2, which means that the scar should vanish in the semiclassical
limit as h̄ → 0; (c) there are the so-called self-focal points where the monodromy matrix
element vanishes, i.e.m12 = 0.

As to the V-shape periodic orbit supporting the scar in figure 7, the self-focal points
take place at the positionx ′ = √L(L− R), whereR is the radius of the half-circle of the
stadium,L the half-length of the periodic orbit. For the stadium we studied,R = 1 and for
the V-shape periodic orbit,L = (1+ √2)R ≈ 2.414, thusx ′ ≈ 1.85. Here,x ′ measures
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Figure 9. The integrated scar intensity profileI versus the width of the integrating tube in units
of the de Broglie wavelength for the eigenstate drawn in figure 7.

Figure 10. The locally averaged (over a small group of consecutive scarred states) maximum
of integrated scar intensity versus wavenumberk. The full circles represent the numerical data,
and the full curve is the least-square fitting, which is 1.85/kα, α = 0.24± 0.06. α differs from
zero significantly, which indicates that this type of scar cannot survive the semiclassical limit.
It will vanish eventually if we go even deeper into the semiclassical regime.

the distance from the centre of the periodic orbit, i.e. from the centre of the straight line
segment of the billiard boundary. If we take a look at the wavefunction shown in figure 7,
we find out that there DO exist focal points locating at about this distance on the periodic
orbit. At that point the amplitude of the probability density of wavefunction is very high.
We believe that this is a very good example supporting conclusion (c) of Bogomolny’s
theory. Of course, this is not an accident example coinciding with Bogomolny’s theory.
We have more examples exhibiting this structure.
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3.3. Scars supported by the horizontal periodic orbit

As further evidence, in figures 11(a)–(h) we present eight examples of scarred states for
stadium withR = 1, ε = 0.2, whereε is the half-length of straight line of the billiard.
The scar in these eight states is supported by the horizontal unstable periodic orbit. It is
very easy to see that the scar-shape is very similar to that predicted by Bogomolny [8] (cf
figure 5 of his paper).

As a quantitative comparison with Bogomolny’s theory, we shall first focus our attention
on the position of the self-focal points in these scarred eigenstates. Roughly the self-focal
point situates atx ′ ≈ 0.5–0.6. According to Bogomolny’s theory, the monodromy matrix
elementm12 = − 2

R
(L(L−R)−(x ′)2). In this caseL = ε+R = 1.2, so that theoretically the

self-focal point should locate atx ′ = √L(L− R) = √0.24≈ 0.5, which is approximately
the case in the wavefunctions shown in figures 11(a)–(h).

Furthermore, Bogomolny’s theory predicts that the width of the scar shrinks with
(h̄/|W(x ′)|)1/2, whereW(x ′) is

W(x ′) = 2(L− R)
L(L− R)− (x ′)2 (11)

for the horizontal periodic orbit. SinceL = 1.2 andh̄ ∼ 1/k, the width of the scarD is
thus proportional to

D(x ′) = C√
k

√
|0.24− x ′2|. (12)

Now, we would like to make a quantitative comparison using this formula (12). In the
following calculation, the constantC in equation (12) is determined by adjusting the width
of D which is approximately equal to the scar’s width at the lowest scarred state, i.e.
k = 11.994 542. Accidently, the choice ofC = (11.994 542)1/2 gives us qualitatively the
best result. The scar widthD(x ′) for different k is then calculated by equation (12). They
are plotted in figures 12(a)–(h) corresponding to the eigenvectorsk of the eigenstates in
figures 11(a)–(h). Looking at these two sets of pictures, we would say that the shape, the
self-focal point and also the width of the scars follow the theoretical prediction very well.
Obviously, the higher the eigenstate, the better the agreement between Bogomolny’s theory
and our numerical results. This, of course, must be the case, because Bogomolny’s theory
is a semiclassical one.

Having investigated the above examples, we arrive at the following conclusion: the
Bogomolny’s theory determines not only the geometry of the scars, but also the intensity
profile scaling withh̄. Finally, it should be pointed out that, strictly speaking, Bogomolny’s
theory is based on averaging over many consecutive states (see equation (10)), however,
our numerical results show that Bogomolny’s function captures the main structure of the
individual scarred eigenstates (see also [17]).

4. Further examples of scars and bouncing ball states

In addition to the scars illustrated in the previous section, we have also discovered quite a
lot of scars, supported by other unstable periodic orbits, at about the 1 millionth eigenstate.
However, because of lacking sufficient ensembles, we were not able to perform the scaling
analysis as we have done in the previous section. We just show two examples here. The
corresponding wavenumbers arek = 1328.069 060 andk = 1328.112 133, respectively.
The sequential numbers are about 1000 004 and 1000 080, respectively, for the total billiard.
Evidently, the scar strength is weaker than that one shown in section 3.1. It seems that these
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Figure 11. (a)–(h) The probability density plots of wavefunctions for eight representative
scarred eigenstates (odd–odd parity) supporting by the horizontal periodic orbit. The stadium
has the parameter of circle radiusR = 1 and the straight line length 0.4. The wave numbers
k are given in the figure. The highest one isk = 800.303 338, which corresponds to index
49 858 using the Weyl formula (odd–odd), thus it corresponds to approximately the 200 445th
eigenstate for the total billiard. The shape of the pronounced wavefunction around the periodic
orbit as well as the self-focal point’s position can be estimated approximately by Bogomolny’s
theory (see text).

scars will not be able to survive the semiclassical limit. Again, the probability distribution
functionP(9) and the cumulative distribution functionI (9) are in good agreement with the
Gaussian function as for the scarred states shown before. Thus, for most of the eigenstates,
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Figure 12. (a)–(h) The geometry of the scars calculated from Bogomolny’s semiclassical theory.
The corresponding scarred states’ wave numbers are presented in the figure. The width of the
scar is determined byC√

k

√
|0.24− x ′2|, here the constant is so chosen that the geometry of the

first one (k =11.994 542) is approximately overlap the scar’s geometry shown in figure 11(a).
Accidently, in our calculationC = (11.994 542)1/2. The goodness of the Bogomolny’s theory
is clearly seen, in particular, at the very high eigenstates such as that shown in figures 11(g)
and (h). Both the self-focal point, which locates at approximatelyx′ ≈ 0.5, and the scar shape
are roughly captured by his theory.

even though they are scarred, the Shnirelman’s theorem applies in the semiclassical limit.
The bouncing ball state is a very special feature of the stadium billiard. It is well know

that due to the existence of a large number of bouncing ball states, the level spacing statistics
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Figure 13. (a), (b) The probability density plots for two very high-lying scarred states. The
scar are supported by different periodic orbits. The wave numbers are given in the figure, and
the sequential number are about 250 002 and 250 019 (odd–odd), which correspond to 1001 280
and 1001 345, respectively, when all parities are taken into account.

in the stadium billiard (forε = 1 or largerε) deviates from the GOE of random matrix
theory at the lower energy range [21, 22]. We have calculated the energy level statistics by
using the first 2000 levels for stadium withε = 1, the best-fitting gives rise to the Brody
parameterβ = 0.83, which is comparable with the experimental result (β = 0.82) of Gr̈af
et al [21]. This number is evidently far from that value of GOE (β = 1) of random matrix
theory. Therefore, as the last example of the high-lying eigenstates, we would like to show
a representative of the bouncing ball states.

The bouncing ball state shown in figure 14 has an eigenvalue ofk = 1329.477 057. As
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Figure 14. One representative bouncing ball state withk = 1328.477 057 which corresponds
to the sequential number about 250 533 (odd–odd) and 1003 405 (total billiard), respectively.
Please note that the eigenvaluek is very close to the eigenvalue of a 1× 1 rectangle billiard of
the quantum numberm = 13 andn = 423, thusknm = 1329.521 12.

it should be, this energy is very close to the eigenenergy of the rectangle billiard with the
side length of 1, which has quantum numberm = 13, n = 423, and thus the eigenvalue
kmn = 1329.521 12. Our numerical results demonstrate that, almost all the bouncing ball
eigenstates’ energy approximately obey this law. At such a high-energy level, we have
observed many bouncing ball states, for instance, the three nearly degenerate consecutive
states atk = 1328.1266, 1328.1278 and 1328.1315 showing a very distinct bouncing ball
signature. For these states, the probability density distribution function deviates strongly
from Gaussian.

Finally, we would like to point out that although the bouncing ball states survive the
semiclassical limit, the fraction of the bouncing ball states to the total number states will
nevertheless vanish in the semiclassical limit. (For more details on the fraction of the
bouncing ball states, please see the two recent papers by Tanner [23] and Bäcker et al
[24].) Therefore, the deviation of the energy-level statistics from GOE will eventually
disappear in the semiclassical limit.

5. Discussions and conclusions

In this paper, we have improved Heller’s PWDM, with the improved method we are able
to calculate the very high-lying eigenstates, as high as about 1 millionth, of the stadium
billiard with a very high accuracy (better than 10−4 of the mean level spacing). By using
the approximate semiclassical quantization criterion equation (4), we have systematically
and extensively searched and collected the scarred states in a very wide range of energies,
varies from ground state to that in the very far semiclassical regime.

Our numerical results demonstrated that the semiclassical criterion (4) works very well
and sometimes even accurately within one mean level spacing. Furthermore, we have
analysed the scaling property of scar with ¯h. We found that the maximal integrated density
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fluctuates from scarred state to state, but the locally averaged intensity scales with energy in
different way for different types of scars. For the diamond-shape scar, the averaged maximal
integrated density does not depend on ¯h, which implies that this type of scar survives the
semiclassical limit. This finding confirms qualitatively and quantitatively Ronbik’s theory
of scars [10].

In addition, we have also discovered that some type of scars, for example the V-shape
and horizontal bouncing ball scars, their geometrical structures such as the scar profile and
the position of the self-focal point etc can be determined well by Bogomolny’s theory. The
width of the scar shrinks approximately with ¯h1/2 for individual eigenstates as predicted by
this theory, although the theory is an averaging result of many consecutive eigenstates.

Even though the eigenstates in the very high semiclassical limit are scarred, the
probability distribution function is nevertheless an excellent Gaussian function, which
verifies the Shnirelman’s theorem.

As illustrated by the examples in this paper, the wavefunctions of eigenstates contain so
rich structures that the nowadays semiclassical theory cannot predict all of them in detail.
There is still a long way for us to go to be able to predict the wavefunction structures of a
given individual eigenstate. But, we believe that the periodic orbits theory could contribute
more in this direction.
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